当前位置:首页 > python教程 > python基础

机器学习 - 决策树

  • 训练/测试

决策树(decision tree)

在本章中,我们将向您展示如何制作“决策树”。决策树是一种流程图,可以帮助您根据以前的经验进行决策。

在这个例子中,一个人将尝试决定他/她是否应该参加喜剧节目。

幸运的是,我们的例中人物每次在镇上举办喜剧节目时都进行注册,并注册一些关于喜剧演员的信息,并且还登记了他/她是否去过。

age experience rank nationality go
36 10 9 uk no
42 12 4 usa no
23 4 6 n no
52 4 4 usa no
43 21 8 usa yes
44 14 5 uk no
66 3 7 n yes
35 14 9 uk yes
52 13 7 n yes
35 5 9 n yes
24 3 5 usa no
18 3 7 uk yes
45 9 9 uk yes

现在,基于此数据集,python 可以创建决策树,这个决策树可用于决定是否值得参加任何新的演出。

工作原理

首先,导入所需的模块,并使用 pandas 读取数据集:

实例

读取并打印数据集:

import pandas
from sklearn import tree
import pydotplus
from sklearn.tree import decisiontreeclassifier
import matplotlib.pyplot as plt
import matplotlib.image as pltimg

df = pandas.read_csv("shows.csv")

print(df)

运行实例

如需制作决策树,所有数据都必须是数字。

我们必须将非数字列 “nationality” 和 “go” 转换为数值。

pandas 有一个 map() 方法,该方法接受字典,其中包含有关如何转换值的信息。

{'uk': 0, 'usa': 1, 'n': 2}

表示将值 'uk' 转换为 0,将 'usa' 转换为 1,将 'n' 转换为 2。

实例

将字符串值更改为数值:

d = {'uk': 0, 'usa': 1, 'n': 2}
df['nationality'] = df['nationality'].map(d)
d = {'yes': 1, 'no': 0}
df['go'] = df['go'].map(d)

print(df)

运行实例

然后,我们必须将特征列与目标列分开。

特征列是我们尝试从中预测的列,目标列是具有我们尝试预测的值的列。

实例

x 是特征列,y 是目标列:

features = ['age', 'experience', 'rank', 'nationality']

x = df[features]
y = df['go']

print(x)
print(y)

运行实例

现在,我们可以创建实际的决策树,使其适合我们的细节,然后在计算机上保存一个 .png 文件:

实例

创建一个决策树,将其另存为图像,然后显示该图像:

dtree = decisiontreeclassifier()
dtree = dtree.fit(x, y)
data = tree.export_graphviz(dtree, out_file=none, feature_names=features)
graph = pydotplus.graph_from_dot_data(data)
graph.write_png('mydecisiontree.png')

img=pltimg.imread('mydecisiontree.png')
imgplot = plt.imshow(img)
plt.show()

运行实例

结果解释

决策树使用您先前的决策来计算您是否愿意去看喜剧演员的几率。

让我们阅读决策树的不同方面:


rank

rank <= 6.5 表示排名在 6.5 以下的喜剧演员将遵循 true 箭头(向左),其余的则遵循 false 箭头(向右)。

gini = 0.497 表示分割的质量,并且始终是 0.0 到 0.5 之间的数字,其中 0.0 表示所有样本均得到相同的结果,而 0.5 表示分割完全在中间进行。

samples = 13 表示在决策的这一点上还剩下 13 位喜剧演员,因为这是第一步,所以他们全部都是喜剧演员。

value = [6, 7] 表示在这 13 位喜剧演员中,有 6 位将获得 "no",而 7 位将获得 "go"。

gini

分割样本的方法有很多,我们在本教程中使用 gini 方法。

基尼方法使用以下公式:

gini = 1 - (x/n)2 - (y/n)2

其中,x 是肯定答案的数量 ("go"),n 是样本数量,y 是否定答案的数量 ("no"),使用以下公式进行计算:

1 - (7 / 13)2 - (6 / 13)2 = 0.497


下一步包含两个框,其中一个框用于喜剧演员,其 'rank' 为 6.5 或更低,其余为一个框。

true - 5 名喜剧演员在这里结束:

gini = 0.0 表示所有样本均得到相同的结果。

samples = 5 表示该分支中还剩下 5 位喜剧演员(5 位的等级为 6.5 或更低的喜剧演员)。

value = [5, 0] 表示 5 得到 "no" 而 0 得到 "go"。

false - 8 位戏剧演员继续: nationality(国籍)

nationality <= 0.5 表示国籍值小于 0.5 的喜剧演员将遵循左箭头(这表示来自英国的所有人),其余的将遵循右箭头。

gini = 0.219 意味着大约 22% 的样本将朝一个方向移动。

samples = 8 表示该分支中还剩下 8 个喜剧演员(8 个喜剧演员的等级高于 6.5)。

value = [1, 7] 表示在这 8 位喜剧演员中,1 位将获得 "no",而 7 位将获得 "go"。


true - 4 名戏剧演员继续: age(年龄)

age <= 35.5 表示年龄在 35.5 岁或以下的喜剧演员将遵循左箭头,其余的将遵循右箭头。

gini = 0.375 意味着大约 37.5% 的样本将朝一个方向移动。

samples = 4 表示该分支中还剩下 4 位喜剧演员(来自英国的 4 位喜剧演员)。

value = [1, 3] 表示在这 4 位喜剧演员中,1 位将获得 "no",而 3 位将获得 "go"。

false - 4 名喜剧演员到这里结束:

gini = 0.0 表示所有样本都得到相同的结果。

samples = 4 表示该分支中还剩下 4 位喜剧演员(来自英国的 4 位喜剧演员)。

value = [0, 4] 表示在这 4 位喜剧演员中,0 将获得 "no",而 4 将获得 "go"。


true - 2 名喜剧演员在这里结束:

gini = 0.0 表示所有样本都得到相同的结果。

samples = 2 表示该分支中还剩下 2 名喜剧演员(2 名 35.5 岁或更年轻的喜剧演员)。

value = [0, 2] 表示在这 2 位喜剧演员中,0 将获得 "no",而 2 将获得 "go"。

false - 2 名戏剧演员继续: experience(经验)

experience <= 9.5 表示具有 9.5 年或以上经验的喜剧演员将遵循左侧的箭头,其余的将遵循右侧的箭头。

gini = 0.5 表示 50% 的样本将朝一个方向移动。

samples = 2 表示此分支中还剩下 2 个喜剧演员(2 个年龄超过 35.5 的喜剧演员)。

value = [1, 1] 表示这两个喜剧演员中,1 将获得 "no",而 1 将获得 "go"。


true - 1 名喜剧演员在这里结束:

gini = 0.0 表示所有样本都得到相同的结果。

samples = 1 表示此分支中还剩下 1 名喜剧演员(1 名具有 9.5 年或以下经验的喜剧演员)。

value = [0, 1] 表示 0 表示 "no",1 表示 "go"。

false - 1 名喜剧演员到这里为止:

gini = 0.0 表示所有样本都得到相同的结果。

samples = 1 表示此分支中还剩下 1 位喜剧演员(其中 1 位具有超过 9.5 年经验的喜剧演员)。

value = [1, 0] 表示 1 表示 "no",0 表示 "go"。

预测值

我们可以使用决策树来预测新值。

例如:我是否应该去看一个由 40 岁的美国喜剧演员主演的节目,该喜剧演员有 10 年的经验,喜剧排名为 7?

实例

使用 predict() 方法来预测新值:

print(dtree.predict([[40, 10, 7, 1]]))

运行实例

实例

如果喜剧等级为 6,答案是什么?

print(dtree.predict([[40, 10, 6, 1]]))

运行实例

不同的结果

如果运行足够多次,即使您输入的数据相同,决策树也会为您提供不同的结果。

这是因为决策树无法给我们 100% 的肯定答案。它基于结果的可能性,答案会有所不同。

  • 训练/测试

【说明】本文章由站长整理发布,文章内容不代表本站观点,如文中有侵权行为,请与本站客服联系(QQ:254677821)!